Simple flow through an axisymmetric pipe

compressibleFlow/axisymmetricPipeFlow.yaml

---
test:
  # a unique test name for this integration tests
  name: axisymmetricPipeFlow
  # create a default assert that compares the log file
  assert: "inputs/compressibleFlow/axisymmetricPipeFlow/axisymmetricPipeFlow.txt"

# metadata for the simulation
environment:
  title: _axisymmetricPipeFlow
  tagDirectory: false
# global arguments that can be used by petsc
arguments: [ ]

# set up the time stepper responsible for marching in time
timestepper:
  # write the output to show the mesh
  io:
    interval: 0
  # time stepper specific input arguments
  arguments:
    ts_type: rk
    ts_max_time: 100000
    ts_max_steps: 50
    ts_dt: 1.0E-10
    ts_adapt_safety: 0.9
    ts_adapt_type: physicsConstrained
  # create a simple box mesh for simulation
  domain: !ablate::domain::MeshGenerator
    name: exampleAxisymmetricMesh
    # specify the axisymmetric mesh description
    description: !ablate::domain::descriptions::Axisymmetric
      axis:
        start: [ 0.0, 0.0, 0.0 ]
        length: 0.5
        nodes: 30 # one more node than slice

      radius: ".05 + (z-.25)*(z-.25)"
      numberWedges: 15
      numberShells: 10
    # output the result label for interior cells
    options:
      # output the flow region to visually check the result
      dm_label_view: flowRegion
      # force the new mesh to check everything
      dm_plex_check_all: true

    # specify any modifications to be performed to the mesh/domain
    modifiers:
      - # use the newly  labels to extrude the boundary.  Do not extrude the cell
        !ablate::domain::modifiers::ExtrudeLabel
        regions:
          - name: boundary
        # mark all the resulting boundary faces with boundaryFaces label
        boundaryRegion:
          name: boundaryFaces
        # tag the original mesh as the flow region
        originalRegion:
          name: flowRegion
        # tag the new boundary cells for easy boundary condition specifications
        extrudedRegion:
          name: boundaryCells

      # if using mpi, this modifier distributes cells
      - !ablate::domain::modifiers::DistributeWithGhostCells
        ghostCellDepth: 2

    # setup some dummy fields
    fields:
      # all fields must be defined before solvers.  The ablate::finiteVolume::CompressibleFlowFields is a helper
      # class that creates the required fields for the compressible flow solver (rho, rhoE, rhoU, ...)
      - !ablate::finiteVolume::CompressibleFlowFields
        eos: !ablate::eos::PerfectGas &eos
          parameters:
            gamma: 1.4
            Rgas: 287.0
          # species are added to the flow through the eos.  This allows testing of the species transport equations
          species: [ N2, H2O, O2 ]
      # by adding a pressure field the code will compute and output pressure
      - name: pressure
        location: AUX
        type: FVM

  # initialize the dummy field
  initialization:
    # ablate::finiteVolume::CompressibleFlowFields is a helper
    # class that creates the required fields for the compressible flow solver (rho, rhoE, rhoU, ...)
    - !ablate::finiteVolume::fieldFunctions::Euler
      state:
        &flowFieldState
        eos: *eos
        pressure: 101325.0
        temperature: 300
        velocity: "0.0, 0.0, 0.0"
        # individual mass fractions must be passed to the flow field state to compute density, energy, etc.
        other: !ablate::finiteVolume::fieldFunctions::MassFractions
          eos: *eos
          values:
            - fieldName: N2
              field: "z > 0.25 ? .2 : 1.0"
            - fieldName: H2O
              field: "z> 0.25 ? .3 :0"
            - fieldName: O2
              field: " z > 0.25 ? .5 : 0"

    # the same state can be used to internalize the DensityMassFractions field from density and mass fractions
    - !ablate::finiteVolume::fieldFunctions::DensityMassFractions
      state: *flowFieldState

# this is a test input file with no solvers
solvers:
  # The compressible flow solver will solve the compressible flow equations over the interiorCells
  - !ablate::finiteVolume::CompressibleFlowSolver
    id: flowField
    # only apply this solver to the flowRegion, area without faces
    region:
      name: flowRegion
    additionalProcesses:
      - !ablate::finiteVolume::processes::PressureGradientScaling
        &pgs
        eos: *eos
        alphaInit: 100.0
        maxAlphaAllowed: 100.0
        domainLength: 0.165354
        log: !ablate::monitors::logs::CsvLog
          name: pgsLog

    # a flux calculator must be specified to so solver for advection
    fluxCalculator: !ablate::finiteVolume::fluxCalculator::AusmpUp
      pgs: *pgs

    # the default transport object assumes constant values for k, mu, diff
    transport:
      k: .2
      mu: .1
      diff: 1E-4

    # cfl is used to compute the physics time step
    parameters:
      cfl: 0.5

    # share the existing eos with the compressible flow solver
    eos: *eos

    monitors:
      # output the timestep and dt at each time step
      - !ablate::monitors::TimeStepMonitor
        interval: 10

  # use a boundary solver to update the cells in the gMsh inlet region to represent an inlet
  - !ablate::boundarySolver::BoundarySolver
    id: inlet
    region:
      name: lowerCap
    fieldBoundary:
      name: boundaryFaces
    mergeFaces: false
    processes:
      - !ablate::boundarySolver::lodi::Inlet
        eos: *eos
        pgs: *pgs
        velocity: "0.0, 0.0, min(10, 10*t)" # for stability, increase the velocity slowly

  # use a boundary solver to update the cells in the gMsh outlet region to represent an open pipe
  - !ablate::boundarySolver::BoundarySolver
    id: openBoundary
    region:
      name: upperCap
    fieldBoundary:
      name: boundaryFaces
    mergeFaces: true
    processes:
      - !ablate::boundarySolver::lodi::OpenBoundary
        eos: *eos
        reflectFactor: 0.0
        referencePressure: 101325.0
        maxAcousticsLength: 1
        pgs: *pgs

  # use a boundary solver to update the cells in the wall region to represent standard wall
  - !ablate::boundarySolver::BoundarySolver
    id: wall
    region:
      name: outerShell
    fieldBoundary:
      name: boundaryFaces
    mergeFaces: true
    processes:
      - !ablate::boundarySolver::lodi::IsothermalWall
        eos: *eos
        pgs: *pgs